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SUMMARY 

An improved formulation of the inverse integral equation method proposed in Reference 1 is presented which 
allows, in particular, a well-posed problem to be ensured. The corresponding computation code is tested in an 
exhaustive manner for axial and radial compressor and turbine cascades. The agreement between the velocity 
field obtained with the inverse method and that resulting from a direct calculation is examined for subsonic, 
transonic and supersonic flows. Accuracy and reliability of the solution to the boundary condition problem 
are excellent for the subsonic and transonic flows. However, for the supersonic flow, the application of the 
method seems to be limited by the use of elementary solutions of the Laplace operator. 

INTRODUCTION 

The development of aerodynamic inverse design procedures has its origin in the optimization 
process of transonic aircraft performance. Accordingly, the best results are obtained today in this 
area2 and only a few methods are available for application to the rotating mixed-flow cascade of a 
turbomachine. This situation is especially regrettable as the possibility of developing a shock-free 
transonic flow is enhanced by the presence of casing walls, which allow a further improvement of 
the compatibility between the double throated streamtubes and the blade passage. On the other 
hand, the possibility of linearizing the flow equations considerably reduces for the cascade flow, 
which may be of little importance for methods using the concept of local approximation. However, 
by giving up the elementary solutions to the wave equation, one faces again the essential and still 
unresolved problem of introducing the causality in an integral method. For the subsonic flow, the 
velocity field is usually obtainted by superposing a field of sources (elementary solutions of the 
Laplace operator satisfying the Poisson equation at one point) on the singularities arising from the 
boundary conditions. If the strength of the sources is calculated from a preceding solution, the 
boundary singularities result from a system of linear equations exactly as for the incompressible 
fluid flow. This technique of iteration has proved also to be efficient for the shock-free transonic 
aerofoil flow3 and should apply with at least equal success to the transonic cascade flow. Indeed, in 
the borderline case of zero pitch to chord ratio, the periodic part of the velocity field induced by a 
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source or vortex row vanish and only a symmetric part remains downstream (after having added 
the unperturbed flow). This parabolic behaviour of the velocity field could even justify the 
application of the above-mentioned elliptic elementary solutions to the slightly supersonic cascade 
flow. 

In the first part of this paper, an improved version of the integral equation method described in 
Reference 1 is presented and some new aspects and problems discussed. In the second part, an 
exhausitve evaluation of the possibilities and limitations of the computation code is presented for a 
number of axial and radial compressor and turbine cascades working in the subsonic, transonic 
and supersonic flow ranges. 

BASIC EQUATIONS 

Consider the compressible and irrotational flow through a cascade situated on an arbitrary surface 
of revolution measured by the meridional co-ordinate m and the angular co-ordinate cp. The 
kinematical condition formulated at the point z of the profile surface S may be written 

(w, cos a’ + ws sin a’)(z) = Av(z), ( 1 )  

with a’ = a +  (0.5 - 2)7c, a being the angle between the tangent to the profile surface and the 
peripheral direction. Depending on whether equation ( I )  refers to the normal or tangential 
direction, 1 takes the value zero or one half. The divergence of the velocity field may be derived from 
the isentropic flow equations: 

and accounts for the fluid compressibility and the variation of the channel height h. As q depends in 
a non-linear way on the velocity field, it is advantageous to calculate it from a preceding solution, 
thus preserving the linear character of the relationship between the relative velocity components 
wm, w, and the vortex strength a x )  on the profile surface: 

w , ,  a,  representing the unperturbed flow given upstream of the surface of revolution considered 
and w being the angular velocity of the cascade. The geometrical kernels K , ,  K ,  are given in 
Reference3. Interpolating -7 over L points on S and the divergence q over M points of the domain F 
wetted by the fluid, equation (1 )  can be formulated for L-l mid-points, yielding, together with the 
Kutta-Joukowsky condition, the linear equation system of the direct prolem: 

D(S)d - [w,b(S) + wc(S) + E(S)el, (4) 

where d, e are the vectors interpolating r and  q, respectively; D and E are matrices depending only 
on the profile geometry and b,c are the following vectors: 

b = [ sin(a’(x,) + a l ) ,  . . . . . , sin (a@, - ) + a ), 01, 
c = [ (r sin a’)(x, ), . . . . . , (r sin a’)(x,- ,), 01. 
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The convergence of this iterative solution method has been shown to be closely related to the 
absence of shocks in the flow field.3 However, as the Mach number increases, the compatibility 
between the local and the boundary conditions reduces, and the minimal convergence interval 
attained in the course of the iterations increases. The proper way to improve this situation would be 
to solve the causality problem by calculating the velocity field. Thus, the possibility of having 
discontinuities, and therefore only single throated streamtubes, would ensure again the conver- 
gence of the calculation. But this is extremly difficult to realize if one is not intending to change the 
compressibility law.4 A first step in this direction consists of calculating the velocity gradient in 
equation (2), defining the source, with an up-winded difference scheme. The introduction of this 
local causality into the direct and inverse computation codes substantially improves the 
convergence and the agreement of the solution with e~per iment .~  

By solving the inverse problem, a vorticity distribution d* is prescribed together with some 
initial values for S,  w ,  and w. In order to satisfy the kinematical condition, we introduce new values 
S + AS, w1  + Awl  and o + Aw in (4): 

D(S + AS)d* = - (wl  + Aw,)b(S + AS) - (w + Aw)c(S + AS) - E(S + AS)e. (6) 

This procedure is justified by the fact that, for a given source distribution, each vortex distribution d 
depends linearly on w1 and o, as can be seen from (4). Applying a Taylor expansion to (6) and 
neglecting second and higher order derivatives, one obtains the equation system of the inverse 
problem: 

where d is the solution to (4) for the values of S , w l , o  and e considered. Here, as for the 
direct problem, the source field e is calculated iteratively from a preceding solution. The resolution 
of the system of linear equations (7) yields the increments AS, A w l ,  A o  and, at convergence of the 
iterative process, the geometric profile one is looking for. 

The best way to produce the variation AS of the geometry is certainly to shift the profile points 
in a direction normal to the profile surface. However, for practical application in turbomachinery, 
the choice of the direction cp seems to be more advantageous.’ With this option, the component 
D’(S)d*AS in a point z of the profile surface may be written: 

[D’(S)d* + w 1  b’(S) + wc’(S) + E’(S)e]AS + b(S)Aw, + c(S)Aw = D(S)(d* - d), (7) 

rzsinaL(%)z{ (Sinai K, -coscr:K,)y*ds + 
S 

the function Acp being interpolated from L unknown values distributed on S. A similar expression 
could be obtained for E’eAS. Neglecting the second term of (8), which accounts for the stretch 
of the abscissa s, and assuming Awl and A o  equal to zero in (6) leads to the equations used in 
reference 1. With the present formulation of the method the inverse problem can be well posed.5 
The presence of a stretch term in the Taylor development reduces the influence of the initial 
profile geometry and improves the convergence of the calculation procedure. The various 
possibilities of application to the two- and three-dimensional problems having been described in 
Reference 1, we close here the theoretical discussion. 

NUMERICAL ASPECTS 

The choice of a constant direction for the displacement of the profile points implies the 
fact that at least one point will practically move on the profile surface itself. In such a ‘frozen’ region 
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the velocity cannot be prescribed, but must be adjusted by shifting the origin so of the abseissa s in 
the way illustrated in Figure 1. Another problem arises from the existence of low velocity 
stagnation regions. As can be seen from (7), the important term D’(S)d* may then considerably 
reduce or vanish. This situation is not catastrophic since the other terms, especially the one 
involving the unperturbed flow, are still present. However, for cascades presenting important 
regions of low velocity, the troubles may become significant. In such cases, a smoothing technique 
consisting of the piecewise interpolation of each Acp with parabolae has been shown to be efficient 
(see Figure 2) .  A last difficulty worth mentioning results from the degeneracy of the information in 
regions characterized by a small inclination of the velocity vector against the peripheral direction. 
Indeed, to prescribe the velocity at the pressure and suction sides is nearly equivalent to giving a 
mean channel velocity and its peripheral component. As a consequence, as the flow angle reduces, 
the more the determination of the meridional velocity component and therefore of the profile 
thickness becomes worse. The remedy is to reduce the error level of the computation code as much 
as possible or to prescribe the profile thickness at one point, at least. 

The actual computation code works with about 50 to 100 basis intervals distributed over the 
profile surface, the radius of the leading edge defining the size of the first interval. For both the 
vortex distribution and the profile geometry a cubic Bessel interpolation6 is used. The source ( 2 )  is 
calculated at each of about 25 meridional stations for seven Gauss points distributed, in the 
peripheral direction, over the channel width. Depending on the amount of change of the profile 
geometry, from one iteration to the next, the matrix E is calculated again or not, thus saving 
calculation time. In general 10 to 20 iterations are necessary to achieve a low error level ( < 1 per 
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Figure 3.  Mach number distribution and geometry of an axial compressor cascade 
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cent) and convergence interval ( < 0.1 per cent) of the solution. The corresponding calculation time 
is situated between 200 and 300 seconds on an IBM-3081 computer. Further information about the 
numerical aspects of the inverse and direct solution methods may be found in Reference 1 and 3. 

APPLICATION 

The computational results presented in this section were obtained by prescribing a velocity 
distribulion obtained from the direct calculation of a given cascade geometry. The initial profile 
geometry needed for the inverse calculation was generated by superposing a certain thickness 
distribution on a camber line defined by the inlet flow angle and an estimated outlet angle. In order 
to check the accuracy of the solution to the inverse boundary condition problem the velocity 
distribution at the surface of the final profile geometry was calculated with a direct method using 
the sources provided by the inverse calculation. For comparing this velocity distribution with the 
prescribed one, special attention was devoted to the compatibility between the direct and inverse 
computation codes, using the same basis functions and discretization of the line and surface 
integrals. Also, the value of the unperturbed flow was known; it has been shown to improve the 
convergence and accuracy of the solution to consider it as a variable. The results illustrated in 
Figures 2-7 demonstrate the capability of the present method to deal with any axial and radial 
compressor or turbine cascade of a turbomachine. The possibility of prescribing simultaneously 
the velocity distribution and the profile thickness by considering the height of the meridional 
channel as an unknown of the problem was described in Reference 1, and is illustrated in Figure 8. 
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Figure 8. Mach number distribution and geometry of a radial compressor cascade calculated with prescribed blade 
thickness (see Figure 4) and variable channel height 
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It will be seen that for this rotating radial cascade an unacceptable thickening of the blades in the 
outlet region can be avoided by a three-dimensional formulation of the inverse problem. 

I t  remains to be seen whether a calculated velocity distribution using sources provided by the 
direct problem agrees with the velocity prescribed for the inverse problem. Indeed, the non-linear 
part of the sources surrounding the profile is determined by the velocity prescribed at its surface, 
as can be seen from equation (2). The source field resulting from the solution to the direct problem, 
where the vortex strength at  the profile surface strongly interacts with the sources in the course of 
the iterations, may therefore be different. It has been observed that for a subsonic flow there is 
practically no difference between the direct and inverse calculations. However, as the Mach 
number increases, the agreement between the two solutions of the strongly non-linear differential 
equation (2) reduces. This state of things is illustrated in Figures 9 to 12, for the transonic and 
supersonic flow through an axial compressor and an axial turbine. All calculations were stopped 
after a minimal mean convergence interval, obtained with the variation of the profile velocity from 
one iteration to the next, was attained. For all inverse and direct subsonic flow calculations and the 
transonic and supersonic compressor flows this interval was less than one per cent, whereas the two 
direct supersonic turbine flow calculations were stopped by 3 and 9 per cent, respectively. This bad 
convergence may result from the fact that the parabolic character induced in the flow field by the 
periodic disposition of the sources and vortices only extends in the axial direction, thus providing a 
better solution for the more meridional compressor flow. 

CONCLUSIONS 

The results presented in Reference 1 and in this paper demonstrate that coherent solutions to the 
direct and inverse problems can be obtained with the integral method for the subsonic and shock- 
free transonic flow through axial or radial turbomachine cascades. The agreement of the results of 
the direct calculation with hodograph solutions and experimental data3 ensures the accuracy and 
reliability of the present inverse design method. 

By making use of elementary solutions of the Laplace operator and avoiding any ‘artificial 
viscosity’ or ‘fictitious gas’ concept, the convergence of the solution is closely related to the 
compatibility between the local and boundary conditions of the real flow and the feasibility of the 
prescribed velocity. This allows, in particular, clear recognition of shock-free flow configurations. 

Application of the method to supersonic compressor and turbine flows seems possible, but 
limited by the actual incapability to properly introduce domains of dependence and discontinuities 
in to the flow field. 
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